sun_diffusion.action module

Physical actions as functions of field configurations.

class sun_diffusion.action.SUNToyAction(beta)

Bases: Action

Toy action on a single \({\rm SU}(N)\) matrix defined by

\[S(U) = -\frac{\beta}{N}{\rm Re}{\rm Tr}(U)\]
Parameters:

beta (float) – Coupling strength

property beta: float

Retrieves the coupling strength beta.

__call__(U)

Computes the action as a function of group elements U.

Return type:

Tensor

class sun_diffusion.action.SUNToyPolynomialAction(beta, coeffs=[1.0, 0.0, 0.0])

Bases: Action

Toy polynomial action over a single \({\rm SU}(N)\) matrix.

The action is defined as in Eqn. (18) of 2008.05456.

\[S(U) = -\frac{\beta}{N}{\rm Re}{\rm Tr}\left[\sum_{n} c_n U^n\right],\]

where \(U^n\) denotes repeated matrix multiplication.

Parameters:
  • beta (float) – Inverse coupling strength

  • coeffs (list) – List of polynomial coefficients. Default: [1,0,0]

property beta: float

Retrieves the coupling strength beta.

__call__(U)

Computes the action as a function of group elements U.

Return type:

Tensor

value_eigs(thetas)

Evaluates the action in terms of the matrix eigenangles thetas.

In the angular representation, the action is given by

\[S(\theta) = -\frac{\beta}{N} \sum_n c_n \sum_j\cos(n \theta_j)\]
Parameters:

thetas (Tensor) – Batch of eigenangles, shaped [B, Nc]

Return type:

Tensor

Returns:

Batch of action values

force_eigs(thetas)

Evaluates the force as a function of the matrix eigenangles thetas.

In the angular representation, the force is given by

\[F(\theta) = -\frac{\beta}{N} \sum_n n c_n \sin(n\theta)\]
Parameters:

thetas (Tensor) – Batch of eigenangles, shaped [B, Nc]

Return type:

Tensor

Returns:

Batch of force values

class sun_diffusion.action.SUNPrincipalChiralAction(beta)

Bases: Action

Action for the \({\rm SU}(N) \times {\rm SU}(N)\) Principle Chiral model on the lattice.

The action is defined as

\[S[U] = -\beta N \sum_x \sum_\mu {\rm Re}{\rm Tr}\left[ U^\dagger(x) U(x + \hat{\mu}) \right]\]
This theory enjoys two noteworthy symmetries:
  • local charge conjugation invariance: \(U(x) \to U^\dagger(x)\)

  • global left-right multiplication invariance:

    \(U(x) \to V_L U(X) V_R^\dagger\)

Parameters:

beta (float) – Inverse temperature parameter

property beta: float

Retrieves the coupling strength beta.

__call__(U)

Evaluates the action on a batch of configurations cfgs.