sun_diffusion.action module¶
Physical actions as functions of field configurations.
- class sun_diffusion.action.SUNToyAction(beta)¶
Bases:
ActionToy action on a single \({\rm SU}(N)\) matrix defined by
\[S(U) = -\frac{\beta}{N}{\rm Re}{\rm Tr}(U)\]- Parameters:
beta (float) – Coupling strength
- property beta: float¶
Retrieves the coupling strength beta.
- __call__(U)¶
Computes the action as a function of group elements U.
- Return type:
Tensor
- class sun_diffusion.action.SUNToyPolynomialAction(beta, coeffs=[1.0, 0.0, 0.0])¶
Bases:
ActionToy polynomial action over a single \({\rm SU}(N)\) matrix.
The action is defined as in Eqn. (18) of 2008.05456.
\[S(U) = -\frac{\beta}{N}{\rm Re}{\rm Tr}\left[\sum_{n} c_n U^n\right],\]where \(U^n\) denotes repeated matrix multiplication.
- Parameters:
beta (float) – Inverse coupling strength
coeffs (list) – List of polynomial coefficients. Default: [1,0,0]
- property beta: float¶
Retrieves the coupling strength beta.
- __call__(U)¶
Computes the action as a function of group elements U.
- Return type:
Tensor
- value_eigs(thetas)¶
Evaluates the action in terms of the matrix eigenangles thetas.
In the angular representation, the action is given by
\[S(\theta) = -\frac{\beta}{N} \sum_n c_n \sum_j\cos(n \theta_j)\]- Parameters:
thetas (Tensor) – Batch of eigenangles, shaped [B, Nc]
- Return type:
Tensor- Returns:
Batch of action values
- force_eigs(thetas)¶
Evaluates the force as a function of the matrix eigenangles thetas.
In the angular representation, the force is given by
\[F(\theta) = -\frac{\beta}{N} \sum_n n c_n \sin(n\theta)\]- Parameters:
thetas (Tensor) – Batch of eigenangles, shaped [B, Nc]
- Return type:
Tensor- Returns:
Batch of force values
- class sun_diffusion.action.SUNPrincipalChiralAction(beta)¶
Bases:
ActionAction for the \({\rm SU}(N) \times {\rm SU}(N)\) Principle Chiral model on the lattice.
The action is defined as
\[S[U] = -\beta N \sum_x \sum_\mu {\rm Re}{\rm Tr}\left[ U^\dagger(x) U(x + \hat{\mu}) \right]\]- This theory enjoys two noteworthy symmetries:
local charge conjugation invariance: \(U(x) \to U^\dagger(x)\)
- global left-right multiplication invariance:
\(U(x) \to V_L U(X) V_R^\dagger\)
- Parameters:
beta (float) – Inverse temperature parameter
- property beta: float¶
Retrieves the coupling strength beta.
- __call__(U)¶
Evaluates the action on a batch of configurations cfgs.